Meteen naar document
Dit is een Premium document. Sommige documenten op Studeersnel zijn Premium. Upgrade naar Premium om toegang te krijgen.

Summary Introduction to Actuarial Science - All formulas and notations

Vak

Introduction to Actuarial Science (EBB827A05)

54 Documenten
Studenten deelden 54 documenten in dit vak
Studiejaar: 2011/2012
Geüpload door:
Anonieme student
Dit document is geüpload door een student, net als jij, die anoniem wil blijven.
Rijksuniversiteit Groningen

Reacties

inloggen of registreren om een reactie te plaatsen.

Gerelateerde Studylists

FIN30014Intros

Preview tekst

Chapter 3: Survival Distributions and Life Tables

Distribution function ofX:

F

X

(x) = Pr(X≤x)

Survival functions(x):

s(x) = 1−F X

(x)

Probability of death between age x and

agey:

Pr(x < X≤z) = F X

(z)−F X

(x)

= s(x)−s(z)

Probability of death between age x and

ageygiven survival to agex:

Pr(x < X≤z|X > x) =

FX(z)−FX(x)

1 −FX(x)

=

s(x)−s(z)

s(x)

Notations:

t

q x

= Pr[T(x)≤t]

= prob. (x) dies withintyears

= distribution function ofT(x)

t

p x

= Pr[T(x)> t]

= prob. (x) attains agex+t

= 1−tqx

t|u

qx = Pr[t < T(x)≤t+u]

=

t+u

q x

t

q x

= tpx−t+upx

=

t

p x

·

u

q x+t

Relations with survival functions:

t

p x

=

s(x+t)

s(x)

tqx = 1−

s(x+t)

s(x)

Curtate future lifetime (K(x)≡ greatest

integer inT(x)):

Pr[K(x) =k] = Pr[k≤T(x)< k+ 1]

=

k

p x

k+

p x

=

k

p x

·q x+k

=

k|

qx

Force of mortalityμ(x):

μ(x) =

fX(x)

1 −F

X

(x)

= −

s

′ (x)

s(x)

Relations between survival functions and

force of mortality:

s(x) = exp

x ∫

0

μ(y)dy

n

p x

= exp

x+n ∫

x

μ(y)dy

Derivatives:

d

dt

t

q x

=

t

p x

·μ(x+t) =f T(x)

(t)

d

dt

t

p x

= −

t

p x

·μ(x+t)

d

dt

T

x

= −l x

d

dt

L

x

= −d x

d

dt

̊ex = μ(x) ̊ex− 1

Mean and variance ofT andK:

E[T(x)] ≡ complete expectation of life

≡ ̊e x

=

∞ ∫

0

t

p x

dt

E[K(x)] ≡ curtate expectation of life

≡ e x

=

∞ ∑

k=

k

p x

V ar[T(x)] = 2

∞ ∫

0

t· t

p x

dt− ̊e

2

x

V ar[K(x)] =

∞ ∑

k=

(2k−1) k

p x

−e

2

x

Total lifetime after agex: T x

Tx=

∞ ∫

0

lx+tdt

©c

Total lifetime between agexandx+ 1: Lx

L

x

= T

x

−T

x+

=

1 ∫

0

lx+tdt=

1 ∫

0

lx·tpxdt

Total lifetime from agextox+n: nLx

nLx = Tx−Tx+n=

n− 1 ∑

k=

Lx+k

=

n ∫

0

lx+tdt

Average lifetime afterx: ̊ex

̊ex=

T

x

l x

Average lifetime fromxtox+ 1: ̊e x: 1

̊e x: 1

=

L

x

lx

Median future lifetime of (x): m(x)

P r[T(x)> m(x)] =

s(x+m(x))

s(x)

=

1

2

Central death rate: mx

mx =

l x

−l x+

L

x

nmx =

l x

−l x+n

n

L

x

Fraction of year lived between agexand

agex+ 1bydx: a(x)

a(x) =

1 ∫

0

t· t

p x

·μ(x+t)dt

1 ∫

0

tpx·μ(x+t)dt

=

L

x

−l x+

l x

−l x+

Recursion formulas:

E[K] =e x

= p x

(1 +e x+

)

E[T] = ̊e x

= p x

(1 + ̊e x+

) +q x

a(x)

ex = ex:n+npxex+n

̊e x

= ̊e x:n

+

n

p x

̊e x+n

E[K∧(m+n)] = e x:m+n

= e x:m

+

m

p x

e x+m:n

E[T∧(m+n)] = ̊e x:m+n

= ̊ex:m+mpx ̊ex+m:n

©c

Varying benefit insurances:

(I

̄

A)

x

=

∞ ∫

0

⌊t+ 1⌋v

t · t

p x

μ x

(t)dt

(I

̄

A)

1

x:n

=

n ∫

0

⌊t+ 1⌋v

t · t

p x

μ x

(t)dt

(IA)

x

=

∞ ∫

0

t·v

t · t

p x

μ x

(t)dt

(IA)

1

x:n

=

n ∫

0

t·v

t · t

p x

μ x

(t)dt

(D

̄

A)

1

x:n

=

n ∫

0

(n−⌊t⌋)v

t · t

p x

μ x

(t)dt

(DA)

1

x:n

=

n ∫

0

(n−t)v

t · t

p x

μ x

(t)dt

(IA)x = Ax+vpx(IA)x+

= vq x

+vp x

[(IA)

x+

+A

x+

]

(DA)

1

x:n

= nvqx+vpx(DA)

1

x+1:n− 1

(IA)

1

x:n

+ (DA)

1

x:n

=n

̄

A

1

x:n

(I

̄

A)

1

x:n

+ (D

̄

A)

1

x:n

= (n+ 1)

̄

A

1

x:n

(IA)

1

x:n

+ (DA)

1

x:n

= (n+ 1)A

1

x:n

Accumulated cost of insurance:

n

̄

k x

=

̄

A

1

x:n

nEx

Share of the survivor:

accumulation factor =

1

nEx

=

(1 +i)

n

npx

Interest theory reminder

a n

=

1 −v

n

i

̄a n

=

1 −v

n

δ

=

i

δ

a n

̄a∞ =

1

δ

, a∞=

1

i

, ̈a∞=

1

d

(Ia) n

=

̈a n

−nv

n

i

(Da) n

=

n− ̄an

δ

(Ia) ∞

=

1

δ

2

(n+ 1)an = (Ia)n+ (Da)n

s ̄ 1

=

i

δ

d = iv

(Ia) ∞

=

1

id

=

1 +i

i

2

Doubling the constant force of interestδ

1 +i → (1 +i)

2

v → v

2

i → 2 i+i

2

d → 2 d−d

2

i

δ

2 i+i

2

2 δ

Limit of interest ratei= 0:

Ax

i=

−→ 1

A

1

x:n

i=

−→ n

q x

n|

Ax

i=

−→ npx

A

x:n

i=

−→ 1

m|n

A

x

i=

−→ m|n

q x

(IA)

x

i=

−→ 1 +e x

(IA)

x

i=

−→ ̊e x

©c

Chapter 5: Life Annuities

Whole life annuity: ̄a x

̄a x

= E[ ̄a T

] =

∞ ∫

0

̄a t

·

t

p x

μ(x+t)dt

=

∞ ∫

0

v

t · t

p x

dt=

∞ ∫

0

t

E

x

dt

V ar[ ̄a T

] =

2 ̄

A

x

−(

̄

A

x

)

2

δ

2

n-year temporary annuity: ̄a x:n

̄ax:n =

n ∫

0

v

t

·tpxdt=

n ∫

0

tExdt

V ar[Y] =

2 ̄

A

x:n

−(

̄

A

x:n

)

2

δ

2

n-year deferred annuity: n|

̄a x

n|

̄ax =

∞ ∫

n

v

t

·tpxdt=

∞ ∫

n

tExdt

n|

̄ax = v

n

·npx ̄ax+n= nEx·a ̄x+n

V ar[Y] =

2

δ

v

2 n · n

p x

( ̄a x+n

2 ̄a x+n

)−(

n|

̄a x

)

2

n-yr certain and life annuity: ̄a x:n

̄a x:n

= ̄ax+ ̄a n

− ̄a x:n

= ̄a n

+

n|

a ̄ x

= ̄a n

+

n

E

x

·a ̄ x+n

Most important identity

1 = δ ̄a x

+

̄

A

x

̄a x

=

1 −

̄

Ax

δ

̄

Ax:n = 1−δa ̄x:n

2 ̄

A

x:n

= 1−(2δ)

2 a ̄ x:n

̈ax =

1 −A

x

d

̈a x:n

=

1 −Ax:n

d

1 = d ̈a x:n

+A

x:n

Recursion relations

̄a x

= ̄a x: 1

+vp x

̄a x+

̄a x

= ̄a x:n

+

n|

a ̄ x

̈a x

= 1 +vp x

̈a x+

2 ̈a x

= 1 +v

2 p x

2 ̈a x+

̈ax:n = 1 +vpx ̈a x+1:n− 1

̈a

(m)

x:n

= ̈a

(m)

x

n

E

x

· ̈a

(m)

x+n

ax = vpx+vpxax+

a x:n

= vp x

+vp x

a x+1:n− 1

(I ̈a)x = 1 +vpx[(I ̈a)x+1+ ̈ax+1]

= ̈a x

+vp x

(I ̈a) x+

Whole life annuity due:a ̈x

̈ax = E[ ̈a K+

] =

∞ ∑

k=

v

k

· k

px

V ar[ ̈a K+

] =

2 A x

−(A

x

)

2

d

2

n-yr temporary annuity due: ̈ax:n

̈ax:n = E[Y] =

n− 1 ∑

k=

v

k

·kpx

V ar[Y] =

2 A x:n

−(A

x:n

)

2

d

2

n-yr deferred annuity due: n|

̈a x

n|

̈ax = E[Y] =

∞ ∑

k=n

v

k

·kpx

= ̈a x

− ̈a x:n

= nEx· ̈ax+n

n-yr certain and life due: ̈a x:n

̈a x:n

= ̈a x

  • ̈a n

−a ̈ x:n

= ̈a n

+

∞ ∑

k=n

v

k · k

p x

= ̈a n

+

n|

̈a x

©c

Chapter 6: Benefit Premiums

Loss function:

Loss = PV of Benefits−PV of Premiums

Fully continuous equivalence premiums

(whole life and endowment only):

̄

P(

̄

A

x

) =

̄

Ax

̄a x

̄

P(

̄

A

x

) =

δ

̄

A

x

1 −

̄

A

x

̄

P(

̄

A

x

) =

1

̄ax

−δ

V ar[L] =

(

1 +

̄

P

δ

)

2

[ 2 ̄ Ax−(

̄

Ax)

2

]

V ar[L] =

2 ̄

A

x

−(

̄

A

x

)

2

(δ ̄a x

)

2

V ar[L] =

2 ̄

Ax−(

̄

Ax)

2

(1−

̄

A

x

)

2

Fully discrete equivalence premiums

(whole life and endowment only):

P(A

x

) =

Ax

̈a x

=P

x

P(A

x

) =

dAx

1 −Ax

P(Ax) =

1

̈a x

−d

V ar[L] =

(

1 +

P

d

)

2 [ 2 A x

−(A

x

)

2

]

V ar[L] =

2 A x

−(A

x

)

2

(d ̈ax)

2

V ar[L] =

2 Ax−(Ax)

2

(1−A

x

)

2

Semicontinuous equivalence premiums:

P(

̄

A

x

) =

̄

A

x

̈a x

m-thly equivalence premiums:

P

(m)

null

=

A

null

̈a

(m)

null

h-payment insurance premiums:

h

̄

P(

̄

A

x

) =

̄

Ax

̄a x:h

h

̄

P(

̄

A

x:n

) =

̄

A

x:n

̄a x:h

h

P

x

=

A

x

̈a x:h

hPx:n =

A

x:n

̈a x:h

Pure endowment annual premiumP

1

x:n

:

it is the reciprocal of the actuarial accumulated

value ̈s x:n

because the share of the survivor who

has depositedP

1

x:n

at the beginning of each year

for n years is the contractual $1 pure endow-

ment, i.

P

1

x:n

̈s x:n

= 1 (1)

P minusP overP problems:

The difference in magnitude of level benefit pre-

miums is solely attributable to the investment

feature of the contract. Hence, comparisons of

the policy values of survivors at agex+nmay

be done by analyzing future benefits:

(

n

P

x

−P

1

x:n

) ̈s x:n

= A

x+n

=

n

P

x

−P

1

x:n

P

1

x:n

(P

x:n

n

P

x

) ̈s x:n

= 1−A

x+n

=

P

x:n

n

P

x

P

1

x:n

(P

x:n

−P

1

x:n

) ̈s x:n

= 1 =

P

x:n

−P

1

x:n

P

1

x:n

Miscellaneous identities:

̄

A

x:n

=

̄

P(

̄

A

x:n

)

̄

P(

̄

A

x:n

) +δ

A

x:n

=

P

x:n

P

x:n

+d

a ̄ x:n

=

1

̄

P(

̄

Ax:n) +δ

a ̈ x:n

=

1

P

x:n

+d

©c

Chapter 7: Benefit Reserves

Benefit reserve tV:

The expected value of the prospective loss at

timet.

Continuous reserve formulas:

Prospective: t

̄

V(

̄

Ax) =

̄

Ax+t−

̄

P(

̄

Ax) ̄ax+t

Retrospective: t

̄

V(

̄

A

x

) =

̄

P(

̄

A

x

) ̄s x:t

̄

A

1

x:n

t

E

x

Premium diff.: t

̄

V(

̄

Ax) =

[

̄

P(

̄

Ax+t)−

̄

P(

̄

Ax)

]

̄ax+t

Paid-up Ins.: t

̄

V(

̄

A

x

) =

[

1 −

̄

P(

̄

Ax)

̄

P(

̄

Ax+t)

]

̄

A

x+t

Annuity res.: t

̄

V(

̄

A

x

) = 1−

̄ax+t

̄ax

Death ben.: t

̄

V(

̄

A

x

) =

̄

A

x+t

̄

A

x

1 −

̄

A

x

Premium res.: t

̄

V(

̄

A

x

) =

̄

P(

̄

Ax+t)−

̄

P(

̄

Ax)

̄

P(

̄

A

x+t

) +δ

Discrete reserve formulas:

k

V

x

= A

x+k

−P

k

̈a x+k

k

V

x:n

=

[

P

x+k:n−k

−P

x:n

]

̈a x+k:n−k

k

V

x:n

=

[

1 −

P

x:n

P

x+k:n−k

]

A

x+k:n−k

tVx:n = Px:ns ̈x:n−tkx

kVx = 1−

a ̈ x+k

̈a x

kVx =

P

x+k

−P

x

P

x+k

+d

k

V

x

=

A

x+k

−A

x

1 −A

x

h-payment reserves:

h

t

̄

V =

̄

A

x+t:n−t

h

̄

P(

̄

A

x:n

) ̄a x+t:h−t

h

k

Vx:n = A x+k:n−k

−hPx:n ̈a x+k:h−k

h

k

V(

̄

A

x:n

) =

̄

A

x+k:n−k

h

P(

̄

A

x:n

) ̈a x+k:h−k

h

k

V

1(m)

x:n

= A

x+k:n−k

h

P

(m)

x:n

̈a

(m)

x+k:h−k

Variance of the loss function

V ar[ t

L] =

(

1 +

̄

P

δ

)

2 [

2 ̄ A x+t

−(

̄

A

x+t

)

2

]

V ar[ t

L] =

2 ̄

Ax+t−(

̄

Ax+t)

2

(1−

̄

Ax)

2

assuming EP

V ar[tL] =

(

1 +

̄

P

δ

)

2 [

2 ̄ A x+t:n−t

−(

̄

A

x+t:n−t

)

2

]

V ar[ t

L] =

2 ̄

A

x+t:n−t

−(

̄

A

x+t:n−t

)

2

(1−

̄

A

x:n

)

2

assuming EP

Cost of insurance: funding of the accumu-

lated costs of the death claims incurred between

agexandx+tby the living att,e.

4 kx =

d x

(1 +i)

3 +d x+

(1 +i)

2 +d x+

(1 +i) +d x+

l x+

=

A

1

x: 4

4 Ex

1

k x

=

d x

lx+

=

q x

px

Accumulated differences of premiums:

(

n

P

x

−P

1

x:n

) ̈s x:n

=

n

n

V

x

n

V

1

x:n

)

= A

x+n

−0 =A

x+n

(

n

P

x

−P

x

) ̈s x:n

=

n

n

V

x

n

V

x

= Px ̈ax+n

(P

x:n

−P

x

) ̈s x:n

=

n

V

x:n

n

V

x

= 1−nVx

(

m

P

x:n

m

P

x

) ̈s x:m

=

m

m

V

x:n

m

m

V

x

= A

x+m:n−m

−Ax+m

Relation between various terminal re-

serves (whole life/endowment only):

m+n+pVx = 1−

(1−

m

V

x

)(1−

n

V

x+m

)(1−

p

V

x+m+n

)

©c

  • If the death benefit is equal to $1 plus the benefit reserve for the firstnpolicy years andqx+h≡q

constant

nV=Ps ̈n−vq ̈sn = (P−vq) ̈sn

Reserves at fractional durations:

(

h

V+π h

)(1 +i)

s = s

p x+h

·

h+s

V +

s

q x+h

v

1 −s

UDD ⇒ (hV+πh)(1 +i)

s

= (1−s·qx+h)h+sV +s·qx+hv

1 −s

=

h+s

V +s·q x+h

(v

1 −s − h+s

V)

h+sV = v

1 −s

· 1 −sqx+h+s·bh+1+v

1 −s

· 1 −spx+h+s·h+1V

UDD ⇒

h+s

V = (1−s)( h

V +π h

) +s( h+

V)

i. h+s

V = (1−s)( h

V) + (s)( h+

V) + (1−s)(π h

)

︸ ︷︷ ︸

unearned premium

Next year losses:

Λ

h

≡ losses incurred from timehtoh+ 1

E[Λ

h

] = 0

V ar[Λh] = v

2

(bh+1−h+1V)

2

px+hqx+h

The Hattendorf theorem

V ar[hL] = V ar[Λh] +v

2

px+hV ar[h+1L]

= v

2 (b h+

h+

V)

2 p x+h

·q x+h

+v

2 p x+h

V ar[ h+

L]

V ar[hL] = v

2

(bh+1−h+1V)

2

px+h·qx+h

+v

4 (b h+

h+

V)

2 p x+h

·p x+h+

·q x+h+

+v

6

(bh+3−h+3V)

2

px+h·px+h+1·px+h+2·qx+h+2+···

©c

Chapter 9: Multiple Life Functions

Joint survival function:

s T(x)T(y)

(s, t) = P r[T(x)> s&T(y)> t]

t

p xy

= s T(x)T(y)

(t, t)

= P r[T(x)> tandT(y)> t]

Joint life status:

F

T

(t) = P r[min(T(x), T(y))≤t]

= tqxy

= 1−

t

p xy

Independant lives

t

p xy

=

t

p x

·

t

p y

tqxy = tqx+tqy−tqx·tqy

Complete expectation of the joint-life sta-

tus:

̊e xy

=

∞ ∫

0

t

p xy

dt

PDF joint-life status:

f T(xy)

(t) = tpxy·μxy(t)

μxy(t) =

f T(xy)

(t)

1 −F

T(xy)

(t)

=

f T(xy)

(t)

t

p xy

Independant lives

μxy(t) = μ(x+t) +μ(y+t)

f T(xy)

(t) = t

p x

·

t

p y

[μ(x+t) +μ(y+t)]

Curtate joint-life functions:

k

p xy

=

k

p x

·

k

p y

[IL]

k

q xy

=

k

q x

+

k

q y

k

q x

·

k

q y

[IL]

P r[K=k] = k

p xy

k+

p xy

=

k

p xy

·q x+k:y+k

= kpxy·qx+k:y+k= k|

qxy

q x+t:y+t

= q x+k

+q y+k

−q x+k

·q y+k

[IL]

exy = E[K(xy)] =

∞ ∑

1

kpxy

Last survivor statusT(xy):

T(xy) +T(xy) = T(x) +T(y)

T(xy)·T(xy) = T(x)·T(y)

f T(xy)

+f T(xy)

= f T(x)

+f T(y)

F

T(xy)

+F

T(xy)

= F

T(x)

+F

T(y)

t

p xy

+

t

p xy

=

t

p x

+

t

p y

̄

A

xy

+

̄

A

xy

=

̄

A

x

+

̄

A

y

̄axy+ ̄axy = ̄ax+ ̄ay

̊e xy

  • ̊e xy

= ̊e x

  • ̊e y

exy+exy = ex+ey

n|

q xy

=

n|

q x

+

n|

q y

n|

q xy

Complete expectation of the last-survivor

status:

̊exy =

∞ ∫

0

tpxydt

e xy

=

∞ ∑

1

k

p xy

Variances:

V ar[T(u)] = 2

∞ ∫

0

t·tpudt−( ̊eu)

2

V ar[T(xy)] = 2

∞ ∫

0

t·tpxydt−( ̊exy)

2

V ar[T(xy)] = 2

∞ ∫

0

t·tpxydt−( ̊exy)

2

Notes:

For joint-life status, work withp’s:

n

p xy

=

n

p x

·

n

p y

For last-survivor status, work withq’s:

n

q xy

=

n

q x

·

n

q y

“Exactly one” status:

np

[1]

xy

= npxy−npxy

=

n

p x

+

n

p y

− 2

n

p x

·

n

p y

= nqx+nqy− 2 nqx·nqy

a ̄

[1]

xy

= ̄ax+ ̄ay−2 ̄axy

©c

Chapter 10 & 11: Multiple Decrement Models

Notations:

tq

(j)

x

= probability of decrement in the next

tyears due to causej

t

q

(τ)

x

= probability of decrement in the next

tyears due to all causes

=

m ∑

j=

t

q

(j)

x

μ

(j)

x

= the force of decrement due only

to decrementj

μ

(τ)

x

= the force of decrement due to all

causes simultaneously

=

m ∑

j=

μ

(j)

x

t

p

(τ)

x

= probability of survivingtyears

despite all decrements

= 1−

t

q

(τ)

x

= e

❘t

0

μ

(τ)

x (s)ds

Derivative:

d

dt

(

t

p

(τ)

x

)

=−

d

dt

(

t

q

(τ)

x

)

=−

t

p

(τ)

x

μ

(τ)

x

Integral forms of t

q x

:

tq

(j)

x

=

t ∫

0

sp

(τ)

x

·μ

(j)

x

(s)ds

t

q

(τ)

x

=

t ∫

0

s

p

(τ)

x

·μ

(τ)

x

(s)ds

Probability density functions:

Joint PDF: f T,J

(t, j) = t

p

(τ)

x

·μ

(j)

x

(t)

Marginal PDF ofJ: f J

(j) = ∞

q

(j)

x

=

∞ ∫

0

fT,J(t, j)dt

Marginal PDF ofT: fT(t) =tp

(τ)

x

·μ

(τ)

x

(t)

=

m ∑

j=

f T,J

(t, j)

Conditional PDF: f J|T

(j|t) =

μ

(j)

x (t)

μ

(τ)

x (t)

Survivorship group:

Group ofl

(τ)

a people at some ageaat timet= 0.

Each member of the group has a joint pdf for

time until decrement and cause of decrement.

n

d

(j)

x

= l

(τ)

a

·

x−a

p

(τ)

a

·

n

q

(j)

x

= l

(τ)

a

x−a+n ∫

x−a

tp

(τ)

a

·μ

(j)

a

(t)dt

nd

(τ)

x

=

m ∑

j=

nd

(j)

x

l

(τ)

a

=

m ∑

j=

l

(j)

a

q

(j)

x

=

d

(j)

x

l

(τ)

x

Associated single decrement:

t

q

′ (j)

x

= probability of decrement from causejonly

t

p

′ (j)

x

= exp

t ∫

0

μ

(j)

x

(s)ds

= 1−

t

q

′ (j)

x

©c

Basic relationships:

tp

(τ)

x

= exp

t ∫

0

[

μ

(1)

x

(s) +···+μ

(m)

x

(s)

]

ds

t

p

(τ)

x

=

m ∏

i=

t

p

′ (i)

x

t

q

′ (j)

x

t

q

(j)

x

tp

′ (j)

x

≥ tp

(τ)

x

UDD for multiple decrements:

t

q

(j)

x

= t·q

(j)

x

tq

(τ)

x

= t·q

(τ)

x

q

(j)

x

=

t

p

(τ)

x

·μ

(j)

x

(t)

μ

(j)

x

(t) =

q

(j)

x

tp

(τ)

x

=

q

(j)

x

1 −t·q

(τ)

x

t

p

′ (j)

x

=

(

t

p

(τ)

x

)q

(j)

x

qxt

Decrements uniformly distributed in the

associated single decrement table:

tq

′ (j)

x

= t·q

′ (j)

x

q

(1)

x

= q

′ (1)

x

(

1 −

1

2

q

′ (2)

x

)

q

(2)

x

= q

′ (2)

x

(

1 −

1

2

q

′ (1)

x

)

q

(1)

x

= q

′ (1)

x

(

1 −

1

2

q

′ (2)

x

1

2

q

′ (3)

x

+

1

3

q

′ (2)

x

·q

′ (3)

x

)

Actuarial present values

̄

A=

m ∑

j=

∞ ∫

0

B

(j)

x+t

v

t

· t

p

(τ)

x

μ

(j)

x

(t)dt

Instead of summing the benefits for each pos-

sible cause of death, it is often easier to write

the benefit as one benefit given regardless of the

cause of death and add/subtract other benefits

according to the cause of death.

Premiums:

P

(τ)

x

=

∞ ∑

k=

B

(τ)

k+

v

k+ · k

p

(τ)

x ·q

(τ)

x+k

∞ ∑

k=

v

k · k

p

(τ)

x

P

(j)

x

=

∞ ∑

k=

B

(j)

k+

v

k+ · k

p

(τ)

x

·q

(j)

x+k

∞ ∑

k=

v

k · k

p

(τ)

x

©c

Constant Force of Mortality

  • Chapter 3

μ(x) = μ > 0 , ∀x

s(x) = e

−μx

l x

= l 0

e

−μx

npx = e

−nμ

= (px)

n

̊ex =

1

μ

=E[T] =E[X]

̊ex:n = ̊ex(1−npx)

V ar[T] = V ar[x] =

1

μ

2

m x

= μ

Median[T] =

ln 2

μ

= Median[X]

ex =

p x

q x

=E[K]

V ar[K] =

p x

(q x

)

2

  • Chapter 4

̄

A

x

=

μ

μ+δ

2 ̄

A

x

=

μ

μ+ 2δ

̄

A

1

x:n

=

̄

Ax(1−nEx)

n

E

x

= e

−n(μ+δ)

(IA)

x

=

μ

(μ+δ)

2

A

x

=

q

q+i

2

A x

=

q

q+ 2i+i

2

A

1

x:n

= A

x

(1−

n

E

x

)

  • Chapter 5

̄a x

=

1

μ+δ

2 ̄a x

=

1

μ+ 2δ

̈a x

=

1 +i

q+i

2 ̈a x

=

(1 +i)

2

q+ 2i+i

2

̄a x:n

= ̄a x

(1−

n

E

x

)

̈ax:n = ̈ax(1−nEx)

(IA)

x

=

̄

A

x

̄a x

=

μ

(μ+δ)

2

(I

̄

A)

x

=

̄

A

x

̈a x

=

μ(1 +i)

(μ+δ)(q+i)

(IA)x = Ax ̈ax=

q(1 +i)

(q+i)

2

(Ia) x

= ( ̄a x

)

2 =

1

(μ+δ)

2

(Ia ̈) x

= ( ̈a x

)

2 =

(

1 +i

q+i

)

2

  • Chapter 6

Px = vqx=P

1

x:n

̄

P(

̄

A

x

) = μ=

̄

P(

̄

A

1

x:n

)

For fully discrete whole life, w/ EP,

V ar[Loss] =p·

2

Ax

For fully continuous whole life, w/EP,

V ar[Loss] =

2 ̄

A

x

  • Chapter 7

t

̄

V(

̄

Ax) = 0, t≥ 0

k

V

x

= 0, k= 0, 1 , 2 ,...

For fully discrete whole life, assuming EP,

V ar[ k

Loss] =p·

2

Ax, k= 0, 1 , 2 ,...

For fully continuous whole life, assuming EP,

V ar[ t

Loss] =

2 ̄

A

x

, t≥ 0

  • Chapter 9

For two constant forces,i. μ

M acting on (x)

andμ

F acting on (y), we have:

̄

Axy =

μ

M +μ

F

μ

M +μ

F +δ

a ̄xy =

1

μ

M +μ

F +δ

̊exy =

1

μ

M +μ

F

A

xy

=

q xy

qxy+i

a ̈xy =

1 +i

q xy

+i

e xy

=

p xy

q xy

©c

De Moivre’s Law

  • Chapter 3

s(x) = 1−

x

ω

l x

= l 0

ω−x

ω

∝(ω−x)

q x

= μ(x) =

1

ω−x

n|m

qx =

m

ω−x

npx =

ω−x−n

ω−x

t

p x

μ(x+t) = q x

=μ(x) =f T

(x), 0 ≤t < ω−x

L

x

=

1

2

(l x

+l x+

)

̊ex =

ω−x

2

=E[T] = Median[T]

ex =

ω−x

2

1

2

=E[K]

V ar[T] =

(ω−x)

2

12

V ar[K] =

(ω−x)

2 − 1

12

m x

=

q x

1 −

1

2

q x

=

2 d x

l x

+l x+

a(x) = E[S] =

1

2

̊e x:n

= nnpx+

n

2

nqx

̊e x:n

= e x:n

+

n

2

n

q x

  • Chapter 4

̄

A

x

=

̄a ω−x

ω−x

̄

A

1

x:n

=

a ̄ n

ω−x

2 ̄ A x

=

̄a

2(ω−x)

2(ω−x)

A

x

=

a ω−x

ω−x

A

1

x:n

=

a n

ω−x

(IA)

x

=

(Ia) ω−x

ω−x

(IA)x =

(Ia) ω−x

ω−x

(IA)

1

x:n

=

(Ia)n

ω−x

(IA)

1

x:n

=

(Ia)n

ω−x

  • Chapter 5

No useful formulas: use ̈ax =

1 −Ax

d

and the

chapter 4 formulas.

  • Chapter 9

̊exx =

ω−x

3

(≡MDML withμ= 2/(ω−x))

̊exx =

2(ω−x)

3

̊exy = y−xpx ̊eyy+y−xqx ̊ey

For two lives with differentω’s, simply translate

one of the age by the difference inω’s.E.

Age 30, ω= 100⇔Age 15, ω= 85

Modified De Moivre’s Law

  • Chapter 3

s(x) =

(

1 −

x

ω

)

c

l x

= l 0

(

ω−x

ω

)

c

∝(ω−x)

c

μ(x) =

c

ω−x

n

p x

=

(

ω−x−n

ω−x

)

c

̊e x

=

ω−x

c+ 1

=E[T]

V ar[T] =

(ω−x)

2 c

(c+ 1)

2 (c+ 2)

  • Chapter 9

̊exx =

ω−x

2 c+ 1

≡ ̊exwithμ=

2 c

ω−x

©c

Chapter 1: The Poisson Process

Poisson process with rateλ:

P r[N(s+t)−N(s) =k] = e

−λt

(λt)

k

k!

E[N(t)] = λt

V ar[N(t)] = λt

Interarrival time distribution:

The waiting time between events. Let T n

de-

note the time since occurence of the eventn−1.

Then theT n

are independent random variables

following an exponential distribution with mean

1 /λ.

P r[Ti≤t] = 1−e

−λt

f T

(t) = λe

−λt

E[T] =

1

λ

V ar[T] =

1

λ

2

Waiting time distribution:

LetSn be the time of then-occurence of the

event,i.e n

=

n

i=

T

i

.

S

n

has a gamma distribution with parametersn

andθ= 1/λ

S

n

≡ GammaRV[α=n, θ=

1

λ

]

P r[S n

≤t] =

∞ ∑

j=n

e

−λt

(λt)

j

j!

f Sn

(t) = λe

−λt

(λt)

n− 1

(n−i)!

E[S

n

] =

n

λ

V ar[S n

] =

n

λ

2

Sum of Poisson processes:

IfN 1

,···, N

k

are independent Poisson processes

with ratesλ 1

,···, λ k

then,N=N 1

+···+N

k

is a Poisson process with rateλ=λ 1

+···+λ k

.

Special events in a Poisson process:

Let N be a Poisson process with rate λ.

Some events i are special with a probability

P r[event is special] =πiand

̃

Nicounts the spe-

cial events of kind i. Then,

̃

N

i

is a Poisson

process with rate

̃

λi=πiλand the

̃

Niare inde-

pendent of one another.

If the probabilityπ i

(t) changes with time, then

E[

̃

N

i

(t)] =λ

t ∫

0

π(s)ds

Non-homogeneous Poisson process:

λ(t) ≡ intensity function

m(t) ≡ mean value function

=

t ∫

0

λ(y)dy

P r[N(t) =k] = e

−m(t)

[m(t)]

k

k!

Compound Poisson process:

X(t) =

N(t)

i=

Y

i

N(t) PoissonRV w/ rateλ

E[X(t)] = λt·E[Y]

V ar[X(t)] = λt·E[Y

2

]

Two competing Poisson processes:

Probability thatnevents in the Poisson process (N 1 ,λ 1 ) occur beforemevents in the Poisson process

(N

2

,λ 2

):

P r[S

1

n

< S

2

m

] =

n+m− 1 ∑

k=n

(

n+m− 1

k

) (

λ 1

λ 1 +λ 2

)

k

(

λ 2

λ 1 +λ 2

)

n+m− 1 −k

P r[S

1

n

< S

2

1

] =

(

λ 1

λ 1

+λ 2

)

n

P r[S

1

1

< S

2

1

] =

λ 1

λ 1

+λ 2

Exam M - Loss Models - LGD

©c 1

Chapter 2&3: Random Variables

k-th raw moment:

μ

k

=E[X

k

]

k-th central moment:

μ k

=E[(X−μ)

k ]

Variance:

V ar[x] = σ

2 =E[X

2 ]−E[X]

2

= μ 2

2

−μ

2

Standard deviation:

σ=

V ar[X]

Coefficient of variation:

σ/μ

Skewness:

γ 1

=

E[(X−μ)

3 ]

σ

3

=

μ 3

σ

3

Kurtosis:

γ 1

=

E[(X−μ)

4 ]

σ

4

=

μ 4

σ

4

Left truncated and shifted variable (aka

excess loss variable):

Y

P =X−d|X > d

Mean excess loss function:

e X

(d) ≡ e(d) =E[Y

P ]

= E[X−d|X > d]

=

d

S(x)dx

1 −F(d)

=

E[X]−E[X∧d]

1 −F(d)

Higher moments of the excess loss vari-

able:

e

k

x

(d) = E[(X−d)

k

|X > d]

=

∞ ∫

d

(x−d)

k f(x)dx

1 −F(d)

=

x>d

(x−d)

k p(x)

1 −F(d)

Left censored and shifted variable:

Y

L

= (X−d)+=

{

0 X < d

X−d X≥d

Moments of the left censored and shifted

variable:

E[(X−d)

k

] =

∞ ∫

d

(x−d)

k

f(x)dx

=

x>d

(x−d)

k p(x)

= e

k (d)[1−F(d)]

Limited loss:

Y = (X∧u) =

{

X X < u

u X≥u

Limited expected value:

E[X∧u] = −

0 ∫

−∞

F(x)dx+

u ∫

0

S(x)dx

=

u ∫

0

[1−F(x)]dx if X is always positive

Moments of the limited loss variable:

E[(X∧u)

k ] =

u ∫

−∞

x

k f(x)dx+u

k [1−F(u)]

=

x≤u

x

k

p(x) +u

k

[1−F(u)]

Moment generating functionsm X

(t):

m X

(t) =E[e

tX ]

Sum of random variablesS k

=X 1 +···+X

k

:

m Sk

(t) =

k ∏

j=

m Xj

(t)

Exam M - Loss Models - LGD

©c 2

Was dit document nuttig?
Dit is een Premium document. Sommige documenten op Studeersnel zijn Premium. Upgrade naar Premium om toegang te krijgen.

Summary Introduction to Actuarial Science - All formulas and notations

Vak: Introduction to Actuarial Science (EBB827A05)

54 Documenten
Studenten deelden 54 documenten in dit vak
Was dit document nuttig?

Dit is een preview

Wil je onbeperkt toegang? Word Premium en krijg toegang tot alle 26 pagina's
  • Toegang tot alle documenten

  • Onbeperkt downloaden

  • Hogere cijfers halen

Uploaden

Deel jouw documenten voor gratis toegang

Ben je al Premium?
Chapter 3: Survival Distributions and Life Tables
Distribution function of X:
FX(x) = Pr(Xx)
Survival function s(x):
s(x) = 1 FX(x)
Probability of death between age xand
age y:
Pr(x < X z) = FX(z)FX(x)
=s(x)s(z)
Probability of death between age xand
age ygiven survival to age x:
Pr(x < X z|X > x) = FX(z)FX(x)
1FX(x)
=s(x)s(z)
s(x)
Notations:
tqx= Pr[T(x)t]
= prob. (x) dies within tyears
= distribution function of T(x)
tpx= Pr[T(x)> t]
= prob. (x) attains age x+t
= 1 tqx
t|uqx= Pr[t < T (x)t+u]
=t+uqxtqx
=tpxt+upx
=tpx·uqx+t
Relations with survival functions:
tpx=s(x+t)
s(x)
tqx= 1 s(x+t)
s(x)
Curtate future lifetime (K(x)greatest
integer in T(x)):
Pr[K(x) = k] = Pr[kT(x)< k + 1]
=kpxk+1px
=kpx·qx+k
=k|qx
Force of mortality µ(x):
µ(x) = fX(x)
1FX(x)
=s(x)
s(x)
Relations between survival functions and
force of mortality:
s(x) = exp
x
Z
0
µ(y)dy
npx= exp
x+n
Z
x
µ(y)dy
Derivatives:
d
dt tqx=tpx·µ(x+t) = fT(x)(t)
d
dt tpx=tpx·µ(x+t)
d
dtTx=lx
d
dtLx=dx
d
dt˚ex=µ(x)˚ex1
Mean and variance of Tand K:
E[T(x)] complete expectation of life
˚ex=
Z
0
tpxdt
E[K(x)] curtate expectation of life
ex=
X
k=1
kpx
V ar[T(x)] = 2
Z
0
t·tpxdt ˚e2
x
V ar[K(x)] =
X
k=1
(2k1) kpxe2
x
Total lifetime after age x: Tx
Tx=
Z
0
lx+tdt
Exam M - Life Contingencies - LGD c
1

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.

Waarom is deze pagina onscherp?

Dit is een Premium document. Word Premium om het volledige document te kunnen lezen.